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Abstract. A new simplified notation of symmetry operations is proposed.
Simplified symbols of all point symmetry operations met with in crystallography can
be easily traduced into corresponding matrices with aid of the generalized matrix
of symmetry operations published in one of former papers. All known point symmetry
operations are discussed from the view-point of simplified symbols.

INTRODUCTION

The generalized matrix derived previously (Nedoma 1976) describes ail
possible point symmetry operations coexisting with translation. To write
a matrix representing a given symmetry operation five following values
must be known:

o — the angle of rotation,

D — the value of the determinant (+1 for ordinary rotation axes, —1
for mirror axes),

M, N, P — coordinates of a point characterizing the position of the
axis in space, the M, N, P — values fulfill the condition M? + N2 + P* =
= 1 the axis passes trought the points M, N, P and 0, 0, 0.

In the foregoing paper an abbreviated symbol of the generalized matrix
a (D, M, N, P) has been introduced. In the present paper the notation of
this symbol will be further simplified.

THE SIMPLIFIED SYMBOL OF THE GENERALIZED MATRIX

The value of D appearing in the generalized matrix may assume only
one of two values +1 and —1. The value of D must not be writtgn expli-
citly in the simplified symbol. It is enough to assume two following sym-
bols:
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a (M, N, P) for an axis with D = 1
and o (M, N, P) for an axis with D = —1.

Instead of writing the rotation angle a in the symbol we can introduce the
value

making use of the fact that for point symmetry. operations coexisting with
translation the rotation angle o can assume only the values of 60, 90, 120,
i N.P) 120 (M,N,P) 180 (M,N,P) and

The symbols 60 (M,N,P) 90 (M,N, ,N, Ny
360 (M,N,yP) can be thus written shorter 6 (M,N,P) 4 (M,N,P) 3 (M,N,P)
2 (M,N,P) and 1 (M,N,P).

In the case of mirror axes the following analogous symbols can be used:
6 (M,N,P) 4 (M,N,P) 3 (M)NP) 2 (M,N,P) 1 (M,N,P). ;
~ The values M, N, P appearing in the generalized matrix rpust ful.flll
the condition M2 + N2 + P2 = 1. The values m, n, p appearing in the sim-
plified symbol must not fulfill this condition, we must be only able to
calculate the proper M, N, P values (needed for introduction into the gene-
ralized matrix) from the m, n, p values appearing in the symbol.

If the sum of squares of m, n, p-values appearing in the simplified sym-
bol is equal to 1 we may assume m = M,n=N,p=P.

If this sum is equal to a value different from 1 (for instance A?) the
proper M, N, P — values can be easily calculated in the following way:

mt 4+ n? + pt = A2

mt  n? P
A AN
oy sl ey gl
—A’N A’P A

The values m, n, p appearing in the simplified symbol and not fulfilling
the condition m? + n? + p? = 1 — before introduction into the generalized
matrix — must be then converted into the proper M, N, P — values. The
conversion consists in dividing each of the m, n, p values by the square
root of the sum of squares m® + n? + p2.

Examples

1. The symbol 6 (0, 0, 1) — or simpler 6 (001) denotes the matrix of
a sixfold mirror axis passing through points 0, 0, 0 and 0, 0, 1. The M, N,
P — values to be introduced into the generalized matrix are M = 0, N =
= (, P = 1 as the sum of m, n, p — squares is equal to 1.

2. The symbol 2 (0, 1, 1) — or simples 2 (011) denotes a matrix of
a two-fold axis passing trough point 0, 1, I and 0, 0, 0. The sum of squares
m? + n? + p* = 2 is not equal to 1: the M, N, P-values to be introduced

into the generalized matrix must be therefore obtained by division by V2
4

1 1
=10 Ni= — P= —
V2 V2

3. The symbol 1 (M,N,P) or simpler 1 (MNP) denotes a rotation by

360°. Each point remains in its position, its coordinates do not change. The
corresponding matrix

1 PR AN
VT 0 = L EN)
s

represents the transformation of identity and remains the same for all
triples of MNP-values.

4. The symbol 2 (M,N,P) or 2 (MNP) denotes a rotation by 180° with
a simultaneous reflection in a mirror plane perpendicular to the rotation
axis and passing trough points 0, 0, 0 and M, N, P. This operation is equ-
ivalent to a reflection in a symmetry center. The matrix

I uiliy 0 0
e, 0| =2 (MNP)
I} 2i0 A

represents thus the reflection in a symmetry center and holds — similarly
as 1 (MNP) — for all possible triples of MN P-values.

5. The symbol 1 (M,N,P) denotes rotation by 360° around an axis pas-
sing trough the points M, N, P and 0, 0, 0 with simultaneous reflection in
a mirror plane perpendicular to this axis. As the rotation by 360° does
not change the coordinates of points in space the operation consists in
a reflection in a mirror plane only. The symbol 1 (M,N,P) denotes thus
reflection in a mirror plane passing through the point 0, 0, 0 perpendi-
cularly to an axis passing trough the points M, N, P and 0, 0, 0.

INVERSION AXES

Rotation by an angle « connected with simultaneous reflection in a sym-
metry center is called inverting rotation and the corresponding axis an
inversion axis. In symbols introduced in this paper an inversion axis can
be written as a result of following multiplication:

n (MNP)-2 (MNP)

In matrix notation:

M2R +cosa  MNR — Psina MPR + Nsina|| | =1 0 0
MNR + Psina N2R + cos a NPR — Msina || - Q=T 0
| MPR = N.sine NPR -+ Msino PR =+ cosa | 0 0 -1

where: R = 1 — cos a



After multiplication we obtain for an inversion axis the following matrix

M2 (—1 + cosa) — cosa
MN (—1 + coso) + Psina
MP(—1 + cosa) — Nsina
MN (—1 + cosa) — Psina
N2(—1 + cosa) — cosa
. NP (—1 + cosa) + Msina
MP (—1 + cosa) + Nsina
NP (—1 + cosa) — Msina

P2(—1 + cosa) — cosa

The determinant calculated for a n (MNP)-axis is equal to 1, the determi-
nant of the matrix 2 (MNP) is equal to —1. The determinant of the resul-

ting matrix must be therefore equal to —1. In the resulting matrix the
value of —1 is placed already on the right position for D. To transform
this matrix into a general matrix of an (MNP)-operation we must change

all signs of the MNP-values and introduce a new angle fulfilling the con-
ditions
cosff = —cosa sin f = sin a
ie. =180 —a
If we introduce for an inversion axis the symbol
@ (MNP) or n(MNP)
we can write generally
o MNPi=:180\7z o (=M.=N;5=R)
or for given axes:
6 (M,N,P) = 3(—M,—N,—P)
MNPy =2 (=M, N, =P
3(M,N,P) = 6(—M,—N,—P)
2 (M,N,P) = 1(—M,—N,—P)
1(M,N,P) = 2 (M,N,P)
To write a matrix for an inversion axis we must transfor ni
/ m the to the
proper n value, change all signs of M, N, P-values and introducz ;ﬁeone'lv;

M, N, P-value and the new rotation angle into th i
» IV, 4 2 e generalized matrix.
We may also proceed in a different simpler way. Basing on the e;luation

n (MNP) = n (MNP)-1 (MNP)

we can write the matrix for the n (MNP)-axi i i
matrix the signs of all matrix elements in)to o;fp?):i%ec(})lr?:sg.e il
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Example 5

‘Let us write th i ) ) i
5(0,0,—1)_ e matrix corresponding to the simplified symbol

First way:

Transforming the inversi xis in
e inversion axis i in i :
A o to the correspondl g mIirror axis we

_ 6(0,0,1) = 3(0,0,—1)
For 3 (0,0,—1) we have:

a = 120°, COSIm— —
D=—1, sing = .\/_3
2
SR .
2

}/opin a sllash

o e |

2 2 '
(4T sineg =600, 1
| 2 2
| 0 0 sl |
Second way:
For 6 (0,0,1) we have:
1
o = 60, c — =
0S 0. 3
Fais
D=1, sin o = l~3
2
el
2
From the generalized matrix we obtain
1 Y
E__zg_ g
2
T 1 =6(0, 0, 1)
(Feyeld ¥ 0
2 -2
0 0 1



After having changed all signs of matrix elements multiplication by 1 (M,
N, P) we obtain the former result.

Each point symmetry operation coexisting with translation can be thus
described with one of following simplified symbols:

Rotation axes Inversion axes Mirror axes

6 (MNP) 6 (MNP) = 3(—M,—N,—P)

4 (MNP) 4 (MNP) = 4(—M,—N,—P)

3 (MNP) 3(MNP) = 6(—M,—N,—P)

2 (MNP) 2 (MNP) =_{(—M,~N,—P) mirror plane

1 (MNP) — indentity 1(MNP) = 2(—M,—N,—P)symmetry center
REFERENCES

NEDOMA J., 1976: A generalized matrix of symmetry elements. Miner. pol. 6, 1,
83—89.

Jézef NEDOMA

UPROSZCZONY ZAPIS OPERACJI SYMETRII
Streszczenie

Zaproponowano Nnowy uproszczony zapis operacji symetrii. Uproszczone
symbole wszystkich punktowych operacji symetrii spotykanych w krystalo-
grafii mozna z latwoécig przettumaczy¢ na odpowiednie macierze opierajgc
sie na macierzy uogélnionej opublikowanej w poprzedniej pracy. Znane
operacje symetrii punktowej przedyskutowano w $wietle symboli uprosz-
czonego zapisu.

[0sep HEJJOMA

COKPAUWIEHHASlI 3BAMTUCb ONEPAULUU CUMMETPUHU

Pesome

Ilpeanaraercs nopas cokpaiiennas sanuch onepaunit cumerpun. Coxpaluen-
Hble CUMOOMH BCeX ONepaluil TOUeUHOH CHMMETPUH BCTpeqaeMl)l); B KpHcTaJ-
Jorpagui JIerko nepesodATCs B COOTBETCTBYIOLIME MATPHIL TpH rrllomoum
06006111eHHON MaTPUILLl ONYOIHKOBAHHOH B npeapiaymei pabore. Bee uspecr-

Hnbie onepauHH TOUYCYHOH CHMMEI]’)HH ac T I T v
£ cCMa uBa 2
: ; l o p p 10TCA C TOYKH 3pe“”n COK
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COEXISTENCE OF SYMMETRY OPERATIONS FROM THE
VIEW-POINT OF SIMPLIFIED MATRIX NATION
PART I
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Abstract. Groups of symmetry operations corresponding to simple rotation
and inversion axes in terms of simplified matrix symbols are derived.

INTRODUCTION

Each point symmetry operation can be represented by its simplified
symbol introduced previously n (MNP) for ordinary rotation axes and
n (MNP) for inversion axes. A simple symmetry operation which trans-
forms the coordinates of a point in space x, y, z into corresponding coor-
dinates «’, 3/, 2 can transform the resulting coordinates once more into &,
y”, 2’. Bach symmetry operation can thus coexist with itself. In this paper
we will discuss this coexistence in terms of simplified matrix notation.
For sake of convenience we will choose the system of coordinates in such
a way that the discussed rotation and inversion axes will be described by

general symbols n (OOP) and n (OOP) respectively, where P2=1 To
shorten the notation we will write in these symbols 1 instead of — ]

Operation 6(001)

With aid of the generalized matrix (introducing o = 602 D=1 M =
= 0, P = 1) we can write:
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1 V3

’T i

som=| vi 1,
‘ 2 2

0 0 1
Multiplying this matrix by itself we obtain
! V3

| 2 B 40
VB i

=7 Z. 0

0 0 1

or — after deciphration — 3 (001).
In terms of simplified symbols we can write therefore:

6 (001)-6 (001) = 3 (001)

Multiplication 3 (001)+6 (001) leads to the matrix 2 (001). Multiplication in
reversed order gives the same result:

6 (001)-3 (001) = 2 (001)
Proceeding in the same way i.e. multiplying each of new resulting opera-

tions by 6 (001) -and by all matrices already derived we obtain the follo-
wing multiplication table:

6 (001) 3(001) 2 (001) 3(001) 6 (001)
6 (001) 3(001) i (001) 3(001) 6 (001) 1(MNP)
3(001) 2 (001) 3 (001) 6(001) = |. 1(MNP) 6 (001)
2(001) 3 (001) 6 (001) 1 (MNP) 6 (001) 3(001)
3(001) 6 (001) 1 (MNP) 6 (001) 3(001) 2(001)
6 (001) 1 (MNP) 6 (001) 3(001) 2.(001) 3(001)

The operation 6 (001) coexisting with itself

symmetry operations:

generates thus the following

1 V3
AR
Bk o
0 o) i
—1 (i)
2(001) = O 1.0
0 v
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(2

———

1 V3
5 T Ry
3(001) = W3- nutw
e
0. 0 < 1l
1 V3
P) 55
GLO0T S |l R L .
2 2
0 |

Let us introduce the following symbol
{n; (M;N;Py) 1, (M;N,P,)}

describing all symmetry operations derived from two coexisting symmetry
operation written in brackets. For the coexistence 6 (001):6 (001) we can
write:

{6 (001)-6 (001)} = 6 (001), 3 (001), 2 (001), 3 (001), 6 (001), 1 (MNP)
Operation 4(001)

Traducing the simplified symbol of this operation into the correspon-
ding matrix we obtain:

(I S e i)
4 (001) = ) all)
Qag 1
Multiplication of this matrix by itself yields:
il g . 0|
O 0 ' = 2(001)
| =D Qi 3

We can write multiplication as follows:
4 (001)-4 (001) = 2 (001)

Continuing the multiplication as in the case of the 6 (001) — operation we
obtain the following multiplication table:

4(001) 2 (001) 4(001)
4 (001) 2(001) 4 (001) 1 (MNP)
2 (001) 4 (001) 1 (MNP) 4(001)
4 (001) 1(MNP) 4(001) 2 (001)

)



where:
x (i )
200 =ik —1 =010
0 20 1

For the operation 4 (001) coexisting with itself we can write:
{4 (001)-4 (001)} = 4 (001), 2(001), 4 (001), 1 (MNP)
Operation 3(001)

To derive all operations resulting from the coexistence 3 (001)-3 (001}
we can make use directly of the multiplication table for 6 (001).

3(001) 3 (001)
3(001) 3(001) 1(MNP)
3(001) 1(MNP) 3 (001)

We have thus:

{3 (001)-3 (001)} = 3 (001), 3 (001), 1 (MNP)

Operation 2(001)

Multiplication 2 (001)-2 (001) leads directly to the operation of identity.
We can write:

{2 (001)-2 (001)} = 2 (001), 1 (MNP)

Operation 1(MNP)

1 (MNP)-1 (MNP) = 1 (MNP)
No new operations are obtained.

{1 (MNP)-1 (MNP)} = 1 (MNP)

Operation 6_(001)
As demonstrated previously
n (MNP) = [n (MNP)-1 (MNP)]

T}i)e brackfets on the right side of this equation account for the fact that
the operation n (MNP) and 1 (MNP) do not exist separately. As a symmetry
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operation acts only the product of these both operations. In the case of
coexistence of two inversion axes we can write:

n (MINIPI)'772 (M,N,P,) = [ (M;N,Py)-1 (MNP)-n, (MzNsz)'T(MNP)]
Besing on the fact that
n (MNP)-1 (MNP) = 1 (MNP)-n (MNP)
1 (MNP)-1 (MNP) = 1 (MNP)
we can rewrite this equation
ny (MyN1Py) - ny (MyNoP;) = ny (MyN1Py)- 1y (M3N,Py)

For the case of coexistence n, (M (N,P;) and n, (M,N,P,)
we obtain

7y (MyN1Py)-ny (MyN,Py) = [0y (MyN,Py)-ng (M,N,Py)-1 (MNP)]

and

To derive all operation resulting from coexistence 6 (001) with itself we
can make use of the multiplication table derived for 6 (001):

6 (001) }‘ 3 (001) 2 (001) 3 (001) 6(001)
6 (001) 3 (001) 2 (001) 3 (001) 6(001) 1(MNP)
3 (001) 2(001) 3(001) 6(001) 1(MNP) 6 (001)
2(001) 3(001) 6 (001) 1 (MNP) 6 (001) 3(001)
3(001) 6 (001) | 1(MNP) 6 (001) 3(001) 2(001)
6 (001) 1 (MNP) } 6 (001) 3 (001) 2 (001) 3 (001)
where:
1 V3
~Sd it Ne
2 2
Bigen =N isis
oW a2
0 0 =
" 120 0
2 (001) = 0 1 0
0 0 =
R
s 2 2
goon& ., @ 1o0%
25 Wb
0 0 =4
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We can write:

{6 (001)-6 (001)} = 6 (001), 3 (001), 2(001), 3(001), 6 (001), 1 (MNP)

Operation 4 (001)

Using the multiplication table for 4 (001) we obtain directly:

4 (001) 2(001) 4 (001)
4(001) 2(001) 4 (001) 1 (MNP)

2(001) 4(001) 1 (MNP) 4.(001)

4.(001) 1 (MNP) 4 (001) 2(001)

where:

& 0 1 0 e ¥, 0 = 0
4(001)=|—1 0 0 4(001) = ||1 0 0
010 el 0 0 =]

For 4 (001) '2(001) we can thus write:
{4 (001)-4 (001)} = 4 (001), 4 (001), 2 (001), 1 (MNP)

: Operation 3(001)
Using the multiplication table derived for 6 (001) we obtain

'3(001) 3 (001) 1(MNP) 3(001) 3 (001)
5(001_) 3 001) 1(MNP) 3(001) 3(001) 1 (MNP)
3(001) 1(MNP) 3(001) 3(001) 1 (MNP) 3(001)
1(MNP) 3 (001) 3(001) 1 (MNP) '3(001) 3 (001)
3 (001) 13(001) 1(MNP) 3(001) 3(001) 1 (MNP)
where:
i 3
I 2 ok .
8(00z) =18 31 i1 .
2 2
0 0 =
Ay 3
i 7w L0 L
3(001) 3 1
2 T 0
0 s
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We can therefore write

Operation_i(OOI)

MultiplicationT‘Z (001)-5 (001) yields 1 (MNP). We have therefore

{2 (001)-2 (001)} = 2 (001), 1 (MNP)

Operation _l(MNP)

CONCLUSIONS

The results obtained above can be summarized as follows:

{6 (001)-6 (001)} = 6 (001), 3 (001), 2 (001)
6 (001), 3 (001), 1 (MNP)

{4 (001)-4 (001)} = 4 (001), 2 (001)
4 (001), 1 (MNP)
{3 (001)-3 (001)} = 3 (001), 1 (MNP)
3(001)
{2 (001)-2 (001)} =2 (001), 1 (MNP)
{1 (MNP)-1 (MNP)} = 1 (MNP)
{6 (001)-6 (001)} = gs__(ooz), 3(001), 2(001)

6 (001), 3 (001), 1 (MNP)

{4 (001)-4 (001)} = 4 (001), 2 (001)
4 (001), 1 (MNP)

{3 (001)-3 (001)} = 3 (001), 3(001), 1 (MNP)
3 (001), 3(001), 1 (MNP)

{2 (001)-2 (001)} = 2 (001), 1 (MNP)
{1 (MNP)-1 (MNP)} = 1 (MNP), 1 (MNP)

(3 (001)-3 (001)} = 3 (001), 3 (001), 3 (001), 3(001), 1 (MNP), 1 (MNP)

After multiplication we obtain immediately the operation of identity.
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WSPOLISTNIENIE OPERACJI SYMETRII
W SWIETLE UPROSZCZONEGO ZAPISU MACIERZOWEGO
CZESC I

Sitreszczenie
Wyprowadzono grupy operacji symetrii odpowiadajgcych zwyktym i in-

wersyjnym osiom symetrii postugujac sie symbolami uproszczonego zapisu
macierzowego.

[0sep H3JIOMA, | Jadwiga POBOZNIAK |

COCYUECTBOBAHUE ONMEPAULMA CUMMETPHUH
C TOYKH 3PEHUI COKPALILEHHOM 3ATTUCH
, YACTb I

PesowMme
BoiBejieHbl TPYMIbl ONepaudi CHMMETPHH COOTBETCTBYIOIIHX OOBLIUHBIM

Il MHBEPCHOHHBIM OCSIM CHMMETPHH TpPHMeHsiss CHMOOJIbI COKpAlleHHOH Ma-
TPHUYHOH 3aTHCH. ?



